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ABSTRACT 

Accurate forecasting of agricultural commodity prices is essential for ensuring food 
security, supporting farmer income, and enabling effective market planning. This 
research focuses on the prediction of daily wholesale potato prices in a Mumbai-based 
mandi using a combination of statistical and machine learning (ML) models. The study 
utilizes historical price data from January 2021 to December 2024, with the models 
trained on data from 2021 to 2023 and tested on out-of-sample data from 2024.   

Four models were employed: the machine learning models XGBoost and LightGBM, 
and the statistical models SARIMA and Prophet. The ML models incorporated feature 
engineering techniques such as lag variables, rolling averages, and calendar features, 
while the statistical models used the raw time-series data. Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error 
(RMSE) were used to assess forecast accuracy.  

The results indicate that LightGBM outperformed all other models, achieving the 
lowest MAPE of 11.90%, followed closely by XGBoost. In contrast, SARIMA and 
Prophet recorded higher error rates, highlighting the limitations of purely statistical 
approaches in capturing real-world price volatility. This study emphasizes the 
importance of adopting feature-rich, data-driven models for short-term agricultural 
price forecasting and provides valuable insights for market stakeholders, 
policymakers, and supply chain planners.     

Keywords: Potato price forecasting, Time series analysis, SARIMA, LightGBM, 
XGBoost, Prophet model. 

 

INTRODUCTION  

Agricultural price forecasting plays a crucial role in ensuring food security, minimizing 
supply chain inefficiencies, and supporting data driven policy formulation. Among key 
crops, potato holds high economic and nutritional value in India. It is one of the most 
important food crop in the world and serves as a staple in Indian diets across regions. 
India is currently the second-largest producer of potatoes globally, after China, 
contributing over 50 million Metric Tonnes annually1. The major potato-producing 
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states include Uttar Pradesh, West Bengal, Bihar, Gujarat, and Madhya Pradesh. 
However, prices in urban Mandis like Mumbai are highly sensitive to supply-demand 
shifts, transportation delays, and local market disruptions. This study focuses on 
forecasting daily wholesale prices of potatoes in a Mumbai-based agricultural market 
(Mandi), primarily the Vashi APMC market (mandi), where price fluctuations 
significantly impact both producers and consumers.   

Potato is a staple crop in India, and its price volatility directly affects both consumers 
and producers. Timely and accurate price forecasting can help farmers make informed 
harvesting and selling decisions, reduce post-harvest losses, and aid government 
bodies in market regulation. Traditional forecasting methods often struggle with high-
frequency, non-linear data. Therefore, this study explores the use of both statistical 
and machine learning models to improve forecasting accuracy.   

The research uses daily potato price data from January 1, 2021, to December 31, 
2024, encompassing multiple cycles of seasonality, festivals, climatic variations, and 
post-pandemic recovery effects. We did not use data prior to 2021 because there 
were significant gaps in the 2020 dataset, largely due to disruptions caused by the 
COVID-19 pandemic and nationwide lockdown, which affected both data availability 
and market consistency. The dataset is divided into training data (2021–2023) and 
testing data (2024) to evaluate how well each model generalizes to unseen future 
prices.  

This study is centered on APMC market a wholesale Mandi in Mumbai, which is a 
metropolitan hub known for high volume consumption. Mumbai's market dynamics 
are shaped by both urban demand and interstate supply chains, especially from major 
producing states like Uttar Pradesh and Gujarat. Price trends in Mumbai also influence 
regional retail prices and often act as a reference point for nearby markets, therefore 
emphasizing of a making a forecasting exercise.   

The research follows a comparative modeling framework, applying both statistical 
models (SARIMA, Prophet) and machine learning models (XGBoost, LightGBM) to the 
same dataset. Each model is evaluated using widely accepted error metrics like Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute 
Percentage Error (MAPE) to objectively assess forecasting accuracy. The comparative 
analysis highlights the strengths and weaknesses of each modeling approach in 
capturing the nuances of high-frequency agricultural price data.  
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LITERATURE REVIEW 

Forecasting agricultural commodity prices, particularly for perishable crops like 
potatoes, has long been a subject of research interest due to its implications for food 
security, farmer income stability, and market efficiency. Several studies have explored 
a wide range of statistical, machine learning (ML), and deep learning (DL) methods to 
model and predict these volatile price patterns.   

Badal et al. (2022) applied the ARIMA model to forecast potato prices in major Indian 
states like Uttar Pradesh, West Bengal, and Bihar. Their study confirmed that ARIMA 
could produce reliable short-term forecasts when applied to weekly data. However, 
the authors noted the limitations of ARIMA in capturing complex non-linear patterns 
inherent in agricultural price movements. Similarly, earlier works have acknowledged 
the simplicity and interpretability of time-series models like ARIMA and SARIMA but 
also recognized their inability to adjust to structural breaks, sudden shocks, or high 
volatility without additional intervention.   

Recent advancements in computational power have led to the adoption of more 
flexible and adaptive models. Nayak et al. (2024) evaluated various deep learning 
architectures, including LSTM, GRU, CNN, and the relatively novel N-BEATS model, for 
forecasting weekly potato prices in the Farrukhabad market of Uttar Pradesh. Their 
findings highlighted that N-BEATS consistently outperformed traditional neural 
networks and time series models across all accuracy metrics (MAE, RMSE, and MAPE), 
suggesting a stronger capacity to capture complex temporary patterns in agricultural 
data.   

In a broader context, Zhao et al. (2024) proposed a hybrid framework called VPF-MoE 
(Vegetable Price Forecasting using Mixture of Experts), which combines large 
language models (LLMs) with deep learning components. Their ensemble approach 
dynamically selected the best prediction model based on the characteristics of the 
vegetable price series. Though their work primarily focused on vegetables like 
cauliflower and eggplant in the Chinese market, it underscored the growing interest 
in model ensembling for price prediction, especially when facing heterogeneity across 
timeframes and commodities.   

Qiao et al. (2024) used an ARMA-GARCH framework to capture both the trend and 
volatility in green onion prices in Korea. They by decomposing price data into trend, 
seasonal, cyclical, and irregular components using advanced techniques like the 
Christiano–Fitzgerald (CF) filter and CensusX-13 adjustment, were able to isolate and 
forecast high-volatility periods more effectively. This approach is also relevant to 
perishable vegetables like potatoes, which often experience price shocks due to 
weather changes, supply chain disruptions, or festival driven demand.   
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Kumar et al. (2022) applied the ARIMA model to analyze and forecast monthly 
wholesale potato prices in Agra over a nine-year period. Their analysis revealed clear 
seasonal trends, with prices remaining low from November to January and prices 
start increasing up from February and peak in November. The ARIMA (2,1,1) model 
showed strong forecasting ability, supported by low MAPE and MSE values. However, 
while effective for short-term prediction, the model's performance was sensitive to 
the data's seasonal and trend components, which may limit its adaptability during 
periods of sudden market shocks or irregular fluctuations.  

Mithiya et al. (2019) utilized the SARIMA model to forecast potato prices in Hooghly 
district, West Bengal, based on a decade of monthly price data. The selected SARIMA 
(1,1,0) (4,1,0) model captured both the seasonal and trend components effectively, 
with prices generally low between January and April and highest in November. 
Diagnostic checks confirmed the model’s robustness, with favorable error metrics 
such as low RMSE and MAPE. The study emphasized the model’s utility for planning 
sale timing but also acknowledged that time-series models like SARIMA, though 
accurate in stable environments, may require enhancements when market dynamics 
shift rapidly.  

Kumar et al. (2019) developed a pre-season crop price forecasting system that uses 
historical price data, weather parameters, and sowing dates to predict potato and 
other crop prices both annually and monthly. By applying ARIMA on rolling means, 
standard deviation checks, Dickey-Fuller tests, and autocorrelation analyses, they 
demonstrated up to 95 % confidence in their pre-sowing potato forecasts. Their work 
highlights the promise of integrating agronomic factors into time-series models but 
notes that predictive accuracy hinges on the availability and granularity of daily price 
and climate data, suggesting room for improvement as more frequent observations 
become available.  

Pavithra et al. (2024) evaluated four exponential-smoothing variants (SES, Holt’s, 
Holt–Winters) alongside ARIMA on potato prices data of the period 2010–2023 in 
Karnataka’s Kolar market. The Triple Exponential Smoothing (Holt–Winters) model 
delivered the best fit with results, MAPE of 0.12 % and RMSE of 207, therefore, easily 
outperforming ARIMA on both training and test splits. Their forecasts for 2024 
showed remarkably stable monthly prices, suggesting that smoothing methods excel 
when seasonality and trend are well-behaved, but they caution these methods may 
falter if structural breaks or sudden shocks occur outside the historical window.  

Jha et al. (2013) compared pure ARIMA, time-delay neural networks (TDNN), and a 
hybrid ARIMA–TDNN approach on monthly soybean and rapeseed mustard prices. 
They showed that neural networks captured nonlinear patterns and turning points 
better than linear models, and that the ARIMA–TDNN hybrid outperformed both 
individual methods in series exhibiting strong nonlinear dynamics. Evaluation throgh 
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RMSE, MAD, and correct-direction metrics confirmed the hybrid model’s superiority 
for complex series, though purely linear series saw little benefit, underscoring the 
importance of pre-testing for nonlinearity when choosing forecasting techniques.  

Kumar et al. (2024) applied ARIMA models to monthly onion prices in three Gujarat 
wholesale markets, Mahuva, Ahmedabad, and Gondal over the period 2004 to 2020. 
The best-fit models for each market were determined to be ARIMA (3,1,2), ARIMA 
(2,1,1), and ARIMA (2,1,2), respectively. The post-sample projections for early 2021 
showed MAPE values of 21.77 %, 22.99 %, and 27.51 %. Their results underscore how 
onion price dynamics vary significantly even within one state, highlighting the 
importance of market-specific model tuning. However, by relying solely on univariate 
ARIMA, the approach may miss exogenous shocks (e.g., weather disruptions, policy 
changes), suggesting that incorporating external predictors could further improve 
forecast robustness.  

The reviewed studies collectively demonstrate the evolution of forecasting models 
from traditional univariate statistical tools to complex, adaptive AI powered systems. 
However, most of the research has either focused on weekly or monthly prices, with 
limited exploration at the daily level, particularly for potato prices. This gap restricts 
the ability of stakeholders to make short-term, data-driven decisions. Our study 
addresses this gap by focusing on daily price forecasting of potatoes, which enhances 
the timeliness and granularity of predictions. Furthermore, unlike prior studies that 
typically rely on a single modeling approach, we compare both statistical (Prophet 
and SARIMA) and machine learning techniques (XgBoost and LightGBM), providing a 
broader perspective on model performance and predictive accuracy in the context of 
agricultural commodity pricing. 

 
OBJECTIVES 

The objectives of our study is twofold: 

1. To develop statistical and machine learning models to forecast daily 
wholesale potato prices in the Vashi APMC market. 

2. To evaluate and compare the performance of the statistical and machine 
learning forecasting models. 
 

DATA AND METHODOLOGY  
 

1) Data Description   

This study utilizes a daily time-series dataset comprising wholesale (model) prices of 
potatoes from a major agricultural market (Mandi) located in Mumbai. The time span 
of the data ranges from 1st January 2021 to 31st December 2024, providing a robust 
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sample that captures, festival-driven demand spikes, seasonal trends, and 
macroeconomic shocks such as inflation and climate disruptions. The primary source 
of the data was the National Horticulture Board (NHB), a government agency under 
the Ministry of Agriculture & Farmers Welfare that is renowned for keeping accurate 
and up-to-date market price records of horticultural products in all Indian states.  

The dataset was structured in a simple two column format as follows:  

 Date: Representing the calendar date of the observation.  

 Price: Representing the daily wholesale (model) price of potato (in Indian 
Rupees per Quintal)  

This structure remained consistent across all forecasting models used in the study, 
except for the Prophet model, which required column names to be modified to ds (for 
date) and y (for price) as per the model's input requirements. This changes however, 
did not affect the underlying data content or structure.  

The final dataset contained 1,461 observations, corresponding to the number of days 
over the four-year period. However, during initial exploration of data, it was observed 
that several dates had missing price values, mainly due to non-operational market 
days such as Sundays, public holidays, or administrative reporting delays. So, as we 
know, missing data is a critical issue in time-series analysis, especially for models like 
SARIMA and Prophet, which assume continuous and evenly spaced intervals. To 
address this issue, data imputation techniques were used. This approach ensured the 
continuity and integrity of the dataset without introducing artificial volatility or 
abrupt structural changes. 

Table 1: Summary Statistics of Daily Potato Prices by Year (₹/quintal) 

Year  Min Price  Max Price  Median Price  

2021  1000  2050  1250  

2022  950  2150  1650  

2023  900  2200  1150  

2024  1000  2750  2250  

 
This table indicates that potato prices in the Mumbai mandi have experienced 
significant intra- and inter-annual fluctuations. Notably, the median price in 2024 
(₹2250/quintal) shows a substantial increase compared to prior years, suggesting a 
sharp upward trend or supply-side shock. The price floor remained relatively stable 
(₹900–₹1000), while the price ceiling increased from ₹2050 to ₹2750, reflecting 
heightened volatility and supporting the need for robust forecasting mechanisms.  
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These insights guided the selection of forecasting models capable of handling non-
linearity, trend shifts, and seasonality, such as SARIMA, Prophet, XGBoost, and 
LightGBM, each evaluated under the same data conditions for consistent 
performance comparison.  

2) Feature Engineering   

Feature engineering plays a critical role in enhancing the predictive performance of 
machine learning models, particularly in time-series forecasting where capturing 
temporal dependencies, seasonality, and structural patterns is essential.  

For this study, no additional features were engineered for the statistical models, 
namely SARIMA and Prophet. These models were trained directly on the original 
univariate time-series data, i.e., the daily wholesale (model) price of potatoes. The 
model’s internal mechanisms inherently account for trend and seasonality, making 
feature expansion unnecessary and, in some cases, counterproductive.  

In contrast, the machine learning models like LightGBM and XGBoost, required 
additional input features to model temporal dependencies and capture hidden 
patterns more effectively. The following categories of features were engineered and 
incorporated into the training dataset:  

Lag Features: Lagged versions of the price variable were created to capture short-
term dependencies. These included lag_1 and lag_7, representing the price values of 
the previous 1 to 7 days, respectively. These features help the models recognize 
autoregressive behavior in price fluctuations.  

Rolling Window Statistics: To incorporate medium-term trend information, rolling 
mean features were added. These included 3-day, 7-day, and 14-day moving averages 
of past prices. Such features smooth out short-term volatility and help the models 
understand underlying price trends.  

Calendar-Based Features: Temporal calendar attributes were extracted from the Date 
column to help the models detect recurring patterns and seasonality. The following 
features were used:  

 Day of the Week (day_of_week): 0 = Monday to 6 = Sunday 

 Month of the Year (month): 1 = January to 12 = December 

 Is the day a weekday or weekend (is_weekend): a binary function – 1 if 
Saturday or Sunday, 0 otherwise 

These engineered features allowed the machine learning models to learn both short-
term fluctuations and seasonal cycles more effectively, which would not be possible 
using the raw price series alone. No scaling or normalization was required, as both 
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LightGBM and XGBoost are tree-based algorithms that are insensitive to the feature 
scale.  

The same set of features was used for both machine learning models to ensure a fair 
comparison in the performance evaluation phase.  

3) Model Description   

This study employs a combination of statistical and machine learning models to 
forecast daily wholesale potato prices in a Mumbai-based agricultural market. The 
objective is to compare the predictive capabilities of traditional time-series methods 
with modern, data-driven approaches, particularly in handling daily-level 
fluctuations. Each model utilized is described in depth below:  

3.1) SARIMA (Seasonal AutoRegressive Integrated Moving Average)  

The SARIMA model is a traditional statistical method for time-series forecasting that 
builds on the ARIMA model by including seasonality. It is particularly well-suited for 
datasets where patterns repeat over fixed intervals, such as monthly or yearly cycles. 
SARIMA works by combining three core elements:  

 Autoregression (AR): Models the relationship between an observation and a 
certain number of lagged observations.  

 Differencing (I): is a method for making a time series stationary by removing 
trends.  

 Moving Average (MA): The relationship between an observation and a 
residual error resulting from a moving average model applied to lagged data.  

To account for seasonality, SARIMA adds seasonal terms to each of these 
components. This enables the model to capture repeating patterns at fixed time 
intervals, such as weekly or monthly price changes in agricultural commodities.  

SARIMA is widely used in economic and agricultural forecasting due to its 
interpretability and strong performance in datasets with clear seasonal trends. In this 
study, SARIMA was applied directly to the raw price series. The model learns from 
past trends and seasonal cycles to predict future prices, particularly well-suited to 
understanding structured and recurring patterns in the potato price data.  

3.2) Prophet  

Prophet, developed by Facebook’s Core Data Science team, is a robust and flexible 
time-series forecasting model designed to handle data with strong seasonal effects 
and historical trend changes. Unlike traditional models, Prophet allows for an intuitive 
decomposition of the time series into three components:  
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 Trend: Measures the long-term increase or decline in a time series.   

 Seasonality: refers to periodic fluctuations that occur at regular intervals, 
such as weekly or annual cycles.  

 Holidays or Events: Allows for the inclusion of known events that may impact 
the time series, such as festivals or policy changes.  

One of Prophet’s key advantages is its ability to automatically detect changepoints, 
moments in time where the trend shifts significantly, and adjust the forecast 
accordingly. It employs an additive model in which non-linear trends are combined 
with seasonal and holiday impacts.  

Prophet is particularly useful in business and policy-related forecasting tasks due to 
its ease of use, minimal parameter tuning, and strong performance on irregular or 
noisy data. In this study, Prophet was trained on the daily price series of potatoes to 
identify key turning points and capture both weekly seasonality and long-term trend 
shifts.  

3.3) LightGBM (Light Gradient Boosting Machine)  

LightGBM is a gradient boosting framework developed by Microsoft that is designed 
for fast, scalable, and high-accuracy performance. It is based on decision tree 
algorithms and operates by sequentially developing models, with each new model 
focusing on fixing prior faults.  Unlike standard boosting approaches, which grow 
trees level-wise, LightGBM grows trees' leaf-wise, which frequently results in higher 
accuracy.  

The model is especially efficient with large datasets and supports features like 
categorical variable handling, missing value handling, and parallel training. Its 
advantages include:  

 Faster training speed and lower memory usage  
 Better accuracy  
 Ability to handle large-scale data  

 

In the context of this study, LightGBM was used to model the relationship between 
the daily potato prices and several engineered features such as lag variables, rolling 
means, and calendar indicators. The model's ability to learn complex, non-linear 
relationships from structured data made it well-suited for this forecasting task. 
Furthermore, LightGBM’s feature importance tools provided insights into which 
factors had the most predictive power.  
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3.4) XGBoost (Extreme Gradient Boosting)  

XGBoost is another popular machine learning algorithm that uses gradient boosting 
decision trees. Known for its predictive power, speed, and regularization techniques, 
XGBoost has become a benchmark model in structured data forecasting competitions 
and academic research.  

Like LightGBM, XGBoost builds models in a sequential manner, with each new tree 
attempting to minimize the residual errors of the previous ensemble. The key 
distinctions of XGBoost include:  

 Regularization (L1 and L2) to avoid overfitting  

 Pruning techniques to reduce complexity  

 Advanced treatment of missing values and sparse data.  

In this study, XGBoost was applied using the same engineered features as LightGBM. 
The model effectively captured both short-term lags and seasonal influences, 
allowing it to adapt to complex pricing behavior in the agricultural domain. Despite 
being computationally intensive, XGBoost offered strong performance in terms of 
forecast accuracy and robustness.  

Table 2: Summary of Forecasting Models Used in the Study 

Model Type Key Strengths 
Input 

Requirements 

Feature 
Engineering 

Needed 

SARIMA  
Statistical 

Time Series  
Captures seasonality and 
trend; interpretable  

Univariate time 
series  

No 

Prophet  
Additive 

Time Series  

Handles changepoints, 
holidays; easy to tune and 
interpret  

Date (ds) and 
value (y)  

No 

LightGBM  
Machine 
Learning  

Fast, scalable, handles 
non-linear patterns  

Tabular data 
with time 
features  

Yes 

XGBoost  
Machine 
Learning  

High accuracy, robust to 
overfitting, strong 
handling of noise  

Tabular data 
with time 
features  

Yes 

 
Each of the four models was evaluated using a common training and testing structure 
to ensure fairness and comparability in their predictive outcomes. The next section 
details the train-test split strategy adopted for this purpose.  
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4) Train-Test Split Strategy  

To evaluate the predictive performance of the forecasting models on unseen data, a 
chronological train-test split was adopted. This approach is essential in time-series 
forecasting, where data exhibits strong temporal dependencies and traditional 
random shuffling methods are not applicable.  

The full dataset spans from 1st January 2021 to 31st December 2024, comprising four 
full calendar years of daily wholesale potato prices. The dataset was split as follows:  

 Training Period: 1st January 2021 to 31st December 2023  

 Testing Period: 1st January 2024 to 31st December 2024  

This split ensures that the models learn from past historical data (three complete 
years) and are evaluated on future data (a full unseen year), thus simulating a real-
world forecasting scenario. The division also aligns with best practices in time-series 
modeling, which emphasize the importance of maintaining temporal order during 
validation.  

The decision to use 2024 as the test year was based on the need to:  

 Evaluate model robustness over a full seasonal cycle  

 Capture forecasting performance across different market conditions 
(festivals, harvest cycles, lean periods)  

 Maintain consistency across all models for fair comparison  

All four models—SARIMA, Prophet, LightGBM, and XGBoost, were trained exclusively 
on the 2021–2023 dataset and then used to generate out-of-sample forecasts for the 
entire year of 2024. This static train-test split was deemed sufficient given the 
dataset's size and the study’s focus on model comparison, not real-time retraining.  

The evaluation of the forecasts, discussed in the next section, was performed by 
comparing the predicted prices for 2024 against the actual observed prices using 
standard error metrics.  

 
5) Evaluation Metrics  

To objectively assess the performance of the forecasting models, the study employs 
three widely used error metrics: Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE) and Mean Absolute Percentage Error (MAPE). These metrics provide a 
comprehensive evaluation of model accuracy, penalizing different types of errors and 
helping to understand both the average and relative prediction performance.  
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Each metric was computed by comparing the actual daily wholesale prices of 
potatoes in 2024 (the test set) with the corresponding model-generated forecasts 
from SARIMA, Prophet, LightGBM, and XGBoost. The formulas and rationale for each 
metric are outlined below.  

1. Mean Absolute Error (MAE)  

𝑀𝐴𝐸 =  
1

𝑛
 ∑ | 𝑦𝑡 − 𝑦𝑡̂  |

𝑛

𝑡=1

 

MAE measures the average magnitude of the absolute errors between the actual and 
predicted values. It is easy to interpret and is less sensitive to large outliers compared 
to RMSE. A lower MAE indicates better model performance.   

2. Root Mean Squared Error (RMSE)   

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑( 𝑦𝑡 −  𝑦𝑡̂  )2

𝑛

𝑡=1

 

RMSE penalizes larger errors more heavily due to the squaring of residuals. It is 
particularly useful when large deviations are undesirable. RMSE is expressed in the 
same units as the target variable (₹/quintal), which makes it intuitive to interpret in 
the context of price prediction.  

3. Mean Absolute Percentage Error (MAPE)  

𝑀𝐴𝑃𝐸 =  
100

𝑛
 ∑ | 

𝑦𝑡 −  𝑦𝑡̂

𝑦𝑡
 |

𝑛

𝑡=1

 

MAPE expresses forecast error as a percentage of the actual values, making it scale-
independent. It is especially helpful for comparing performance across different time 
periods or datasets. However, MAPE can be distorted when actual values are very 
small.  

All models were evaluated using the same test set (daily prices for the year 2024) to 
ensure consistency and comparability. The metrics were calculated using built-in 
functions from Python libraries such as scikit-learn and statsmodels, depending on 
the model type.  
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RESULTS 

This section presents the results of the four forecasting models used, SARIMA, 
Prophet, LightGBM, and XGBoost which were evaluated on the daily wholesale potato 
prices for the test period of 1st January 2024 to 31st December 2024. The models 
were assessed using three standard evaluation metrics: Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), as 
described in above section.  

Table 3: Forecasting Performance of Models on 2024 Daily Potato Prices 

Model  MAE (₹/quintal)  RMSE (₹/quintal)  MAPE (%)  

LightGBM  279.28  362.88  11.90%  

XGBoost  281.22  364.06  12.02%  

SARIMA  795.69  919.02  34.92%  

Prophet  852.87  975.90  37.50%  

  
1) Visual Interpretation of Forecast Accuracy   

To supplement the numerical results, actual vs predicted line plots were generated 
for each model across the test period (2024). These visualizations help assess how 
closely each model’s forecast tracks the real price movements throughout the year, 
and reveal strengths and weaknesses not always captured by numerical error metrics 
alone.  

The forecast generated by the Prophet model in figure 1 below shows that the model 
remains relatively flat and smoothed, failing to capture the real-world fluctuations 
seen in the actual price trend. While Prophet is capable of modeling seasonal and 
trend components, its limited responsiveness to sharp price changes results in 
significant underfitting. This is particularly evident during the mid-year and end-of-
year peaks, where the model underestimates the true values. The widening 
confidence interval also reflects increasing uncertainty over time, typical of additive 
models that assume smooth future evolution. 

 
Figure 1: Prophet – Actual vs Predicted with Confidence Interval 
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The graph in Figure 2 below presents a comparison between the actual daily potato 
prices observed in the Mumbai Mandi for the year 2024 and the forecasted prices 
generated using the SARIMA model, along with the 80% and 95% prediction intervals.  

The black line represents the actual price trend, which exhibits strong seasonality and 
volatility throughout the year. There is a noticeable price increase during the middle 
of the year, followed by a sharp decline toward the end.  

In contrast, the red line illustrates the forecasted prices from the SARIMA model, 
which remain almost flat across the entire forecast horizon. This flatness indicates 
that the SARIMA model failed to capture the dynamic price movements, seasonal 
fluctuations, and non-linear trends observed in the actual data.  

 The shaded regions denote the confidence intervals:  

  The dark blue band represents the 80% confidence interval.  

  The light blue band represents the 95% confidence interval.  

Although the forecast includes these uncertainty bands, the actual prices consistently 
fall outside the predicted range, especially during the periods of sharp increase and 
decline. This signifies poor forecast accuracy and highlights the model's limited ability 
to adapt to sudden market shifts.  

Moreover, the widening of the confidence intervals over time suggests that the 
SARIMA model becomes increasingly uncertain in its long-term predictions. This is a 
known limitation of univariate time series models like SARIMA, which rely solely on 
historical price values and do not incorporate external or engineered features such as 
calendar effects, weather conditions, or lagged trends.   

Figure 2: SARIMA – Actual vs Predicted 

The graph in figure 3 below reflects that Extreme Gradient Boosting (XGBoost) also 
exhibits strong predictive power, closely mirroring the overall pattern of actual potato 
prices throughout 2024. Like LightGBM, XGBoost benefits from the inclusion of time-
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aware features such as previous day prices, rolling windows, and temporal indicators 
(e.g., day of the week, month). These features enable it to capture both 
autoregressive dependencies and seasonal effects.  

XGBoost demonstrates particularly good performance during steady market phases, 
such as the mid-year period (June to August), where it maintains a tight alignment 
with observed values. In these periods, the model's low variance and strong 
regularization allow it to make precise, stable predictions with minimal noise.  

However, in periods of heightened volatility, such as late Q3 and early Q4, the model 
exhibits a slight tendency to underpredict during extreme spikes. This behavior is not 
uncommon for tree-based ensemble methods that prioritize average trend capture 
over outlier sensitivity. Nonetheless, XGBoost still correctly anticipates the direction 
and general shape of the trend, which is critical for operational forecasting in 
agricultural markets.  

Compared to LightGBM, XGBoost appears to be marginally more conservative, 
possibly due to its different boosting mechanics (level-wise vs. leaf-wise tree growth). 
While this makes it slightly less reactive to abrupt shifts, it also reduces the risk of 
overfitting, leading to robust performance across most timeframes.  

With a MAPE of 12.02%, XGBoost stands as a close second in overall model 
performance. Its consistent accuracy and reliable generalization make it a highly 
effective forecasting tool, particularly in scenarios where moderate price fluctuations 
are expected, and stability is preferred over high sensitivity.  

Figure 3: XGBoost – Actual vs Predicted 

The graph in Figure 4 below shows that the Light Gradient Boosting Machine 
(LightGBM) model demonstrated remarkable forecasting accuracy, as evidenced by 
the close alignment between predicted and actual potato prices across the 2024 test 
period. Unlike traditional statistical models, LightGBM leverages engineered features 
such as lagged values, rolling averages, and calendar-based attributes, allowing it to 
model both short-term fluctuations and long-term seasonal patterns in price 
behavior.  
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In the first half of the year, LightGBM responds well to the subtle increases and 
decreases in prices, capturing the general upward trend around March–April, which 
may correspond to pre-monsoon demand and changing supply conditions. The model 
also performs well during the June–July plateau, accurately reflecting periods of 
market stability.  

More notably, in the second half of the year, where the price series becomes more 
volatile, particularly around September through November, LightGBM still manages 
to follow the actual trend with high fidelity. Although it slightly underpredicts during 
sharp price spikes, the magnitude and direction of changes remain largely accurate, 
indicating that the model effectively learns from historical lag patterns and seasonal 
cycles.  

The model’s predictions remain smooth yet reactive, suggesting a good balance 
between generalization and responsiveness. Unlike SARIMA and Prophet, which often 
over-smooth or lag behind sudden changes, LightGBM is better at adapting to non-
linear transitions due to its boosting framework and ability to handle complex feature 
interactions.  

This performance highlights LightGBM’s strength in capturing agricultural price 
movements, especially in real-world contexts where data is noisy, seasonal, and 
influenced by multiple indirect factors. Its superior MAPE (11.90%), the lowest among 
all models tested, further reinforces its suitability for short-term, high-frequency 
market forecasting in perishable commodity sectors.  

Figure 4: LightGBM – Actual vs Predicted 

The results indicate that machine learning models (LightGBM and XGBoost) 
significantly outperformed the statistical models (Prophet and SARIMA) in all three-
evaluation metrics. LightGBM achieved the lowest error rates, with a MAPE of 
11.90%, closely followed by XGBoost at 12.02%. This suggests that ensemble tree-
based algorithms are better equipped to handle complex patterns in high-frequency, 
non-linear agricultural price data when supplemented with engineered features.  
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In contrast, both SARIMA and Prophet, although widely used in univariate time-series 
forecasting, exhibited higher error values, with MAPE values exceeding 34%. These 
results show that while statistical models can capture seasonal structures, they may 
underperform in highly volatile, real-time forecasting scenarios without external 
features.   
 

RECOMMENDATIONS AND CONCLUSIONS  

 
The results of this study clearly indicate that machine learning models that too 
specifically LightGBM and XGBoost, outperform traditional statistical methods 
(SARIMA and Prophet) when it comes to forecasting daily wholesale potato prices in 
an urban Indian mandi. These findings have practical implications for farmers, 
policymakers, traders, and supply chain stakeholders involved in the Indian agri-
market ecosystem.  

LightGBM, in particular, achieved the lowest forecasting error, suggesting that 
feature-driven models are more effective in capturing non-linear trends, seasonal 
fluctuations, and abrupt price changes in volatile, high-frequency agricultural 
markets. XGBoost followed closely, offering robust and consistent performance with 
slightly conservative predictions. In contrast, SARIMA and Prophet, while effective at 
modeling seasonal structure, lacked the flexibility to adapt to unexpected price surges 
or regime shifts, resulting in higher forecast errors.  

These insights support a paradigm shift toward hybrid or machine learning–based 
forecasting frameworks, especially in regions like India, where price fluctuations are 
driven by a mix of climate patterns, transportation disruptions, festivals, and market 
interventions. The integration of lag-based, rolling, and calendar features provides a 
more nuanced understanding of price behavior than univariate historical data alone.  

The adoption of ML-based models can enable better decision-making for 
procurement planning, inventory management, and government price stabilization 
policies. In the context of Mumbai and similar urban markets, such predictive tools 
can also inform consumer advisories, reduce wastage, and contribute to more 
efficient food distribution systems.  

 

1) LIMITATIONS  

Despite the encouraging results achieved in this study, several limitations must be 
acknowledged, which could influence the interpretability and generalizability of the 
findings:  
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Limited Feature Scope: The machine learning models were trained using time-
derived features such as lag variables, rolling averages, and calendar-based indicators. 
However, external drivers like rainfall, fuel prices, festival dates, transport disruptions, 
and other macroeconomic variables, are often influential in agricultural pricing which 
were not included due to data unavailability. Their inclusion could potentially 
enhance forecast precision, especially during high-volatility periods.  

Missing Data Periods: One of the critical constraints faced during dataset preparation 
was missing historical data. Notably, there was a significant data gap from 22nd March 
to 26th May 2020, a period coinciding with India’s first COVID-19 lockdown, where 
markets were either closed or reporting was inconsistent. Additionally, in the year 
2017, data was missing for nearly four consecutive months starting from June. Due to 
these discontinuities, the dataset used in this study was limited to January 2021 to 
December 2024, thereby restricting the training window and limiting the model’s 
ability to learn from long-term patterns, particularly during the months of March and 
April, which are typically transitional periods in the crop supply cycle.  

Single-Market Limitation: The analysis is based solely on data from one wholesale 
market in Mumbai, which, although representative of urban consumption centers, 
may not fully capture price dynamics across rural or semi-urban mandis. Hence, 
caution is advised in generalizing these findings to different regions without further 
validation.  

 

2) FUTURE SCOPE OF RESEARCH   

This study opens several avenues for further exploration. Future research can benefit 
from the inclusion of external factors such as weather patterns, festival calendars, fuel 
prices, and policy interventions to improve model accuracy, especially during volatile 
periods. Expanding the dataset to include multiple markets across different regions 
could enhance the generalizability of results and support broader policy applications. 
Additionally, exploring hybrid models that combine statistical techniques with deep 
learning architectures (e.g., LSTM, N-BEATS) may offer improved adaptability to 
complex, real-world pricing behavior.  
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